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Abstract. Properties of single-Λ and double-Λ hypernuclei for even-N Ca isotopes ranging from the proton
dripline to the neutron dripline are studied using the relativistic continuum Hartree-Bogoliubov theory
with a zero-range pairing interaction. Compared with ordinary nuclei, the addition of one or two Λ-
hyperons lowers the Fermi level. The predicted neutron dripline nuclei are, respectively, 75

Λ Ca and 76
2ΛCa,

as the additional attractive force provided by the Λ-N interaction shifts nuclei from outside to inside the
dripline. Therefore, the last bound hypernuclei have two more neutrons than the corresponding ordinary
nuclei. Based on the analysis of two-neutron separation energies, neutron single-particle energy levels,
the contribution of continuum and nucleon density distribution, giant halo phenomena due to the pairing
correlation, and the contribution from the continuum are suggested to exist in Ca hypernuclei similar to
those that appear in ordinary Ca isotopes.

PACS. 21.10.Gv Mass and neutron distributions – 21.60.-n Nuclear-structure models and methods –
21.60.Jz Hartree-Fock and random-phase approximations – 21.80.+a Hypernuclei

With the rapid development of radioactive ion beam
(RIB) factories, nuclear physics has extended its interests
to the limits of nuclear existence and to understand the
basic physics of the nuclear landscape. New forms and
dynamics of nuclei such as neutron skins and halos are
explored. More and more exotic nuclei have been investi-
gated since the first case of halo phenomenon in the exotic
nucleus 11Li was discovered [1].

Neutron halos can be interpreted as the scattering
of Cooper pairs into the continuum, which contains low-
lying resonances of small angular momentum, based on the
relativistic continuum Hartree-Bogoliubov (RCHB) the-
ory [2]. After successfully describing 11Li [3], giant halos
in exotic Zr [4] and Ca [5] nuclei are predicted using the
RCHB theory. Although these have not been observed so
far, it will be very exciting and challenging for both theo-
rists and experimentalists to explore new exotic nuclear re-
gions, that the present and the planned facilities can reach.

After the first hypernuclear event found in the
1950s [6], much experimental and theoretical effort has
been devoted to the investigation of this area of nuclear
physics, and a number of comprehensive reviews can be
found in refs. [7–13], and references therein. With the ad-
ditional degree of freedom of strangeness, hypernuclei can
provide more information than ordinary nuclei; they add
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another dimension to weak, electromagnetic or hadronic
probes of nuclear dynamics, and can penetrate dense nu-
clear matter inaccessible to other hadronic probes for the
strangeness carried by hyperons. In astrophysics, hyperons
also play a significant role in the formation and thermal
structure evolution of neutron stars [14].

Using a variety of hypernuclear production reactions
and coincidence measurement techniques, data on the
single-Λ [15–17] and double-Λ hypernuclei [18–22] have
been accumulated. Non-relativistic few-body methods
and Skyrme-Hartree-Fock theory have been successfully
used to describe single-Λ and double-Λ hypernuclei, see
refs. [23,24], and references therein. Relativistic Mean-
Field theory (RMF) is one of the most successful ap-
proaches for ordinary nuclei [25–27]. It has been applied
to describe single and multi-Lambda systems, includ-
ing the single-particle spectra of Λ-hypernuclei and the
spin-orbit interaction, and extended beyond the Lambda
to other strange baryons using SU(3) [28–38]. With
the strangeness and double charge exchange reaction
(K−, π+) as a source, prospects for the production of
Λ-hypernuclei with a large neutron excess and a neu-
tron halo have been discussed [39]. The single-Λ exotic
hypernuclei have been studied in ref. [38]. Here in this
paper, motivated by the experimental knowledge of Λ-N
interactions and the theoretical understanding on giant
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halos [4,5], we present results of a study of the single-Λ
and double-Λ hypernuclei of the even-N calcium isotopes,
restricted to the spherical case, ranging from the proton
dripline to the neutron dripline, with the RCHB theory.
Particular attention will be paid to the stability of giant
halos in hypernuclei.

In the RMF theory, one describes the nucleons
in a nucleus as Dirac spinors (ψ, m) moving in the
fields of mesons: isoscalar-scalar meson (σ, mσ, gσ),
isoscalar-vector meson (ω, mω, gω), isovector-vector me-
son (�ρ, mρ, gρ) and the photon (A). For Λ-hypernuclei,
the additional contributions from the Λ particles are in-
cluded by introducing three new coupling parameters gΛσ ,
gΛω and fΛ

ω , while Λ-hyperons are treated as Dirac spinors
ψΛ with mass mΛ. The field tensor for the ω-meson is
given as Ωµν = ∂µων − ∂νωµ and by similar expressions
for the ρ-meson and the photon. The Lagrangian density
including the non-linear self-coupling of the σ field (cou-
pling constants g2 and g3) is constructed as

L = ψ̄

(
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In ref. [36], in order to get more attraction in multi-
hyperon hypernuclei, an additional scalar meson σ∗ and a
vector meson φ, which couple only to hyperons, are intro-
duced:

L′
ΛΛ =

1
4
SµνS

µν +
1
2
m2

φφµφ
µ − gΛφψΛγµψΛφ

µ

+
1
2
(∂νσ

∗∂νσ∗ −m2
σ∗σ∗2)− gΛσ∗ψΛψΛσ

∗, (2)

where Sµν = ∂µφν − ∂νφµ and the coupling constants gΛσ∗

and gΛφ satisfy
gΛφ
gω

= −
√
2
3

and
gΛσ∗

gσ
= 0.69.

From the above Lagrangian one can derive the rela-
tivistic Hartree-Bogoliubov (RHB) equations; for details
see ref. [40]. In the pairing channel a density-dependent
two-body force of zero range

V (r1, r2) = V0δ(r1 − r2)14 [1− σ1σ2]
(
1− ρ(r)

ρ0

)
(3)

has been used instead of the one-meson exchange in-
teraction, just as was done in refs. [2,3]. The RHB
equations for nucleons and the Dirac equations for
Λ-hyperons, restricted to spherical symmetry, were solved
self-consistently in coordinate space. The detailed formal-
ism and numerical techniques can be found in ref. [2], and
references therein.
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Fig. 1. The two-neutron separation energies S2n in even-N Ca
isotopes versus the neutron number N . The upper panel is for
ordinary nuclei, the middle one for single-Λ hypernuclei, and
the lower one for double-Λ hypernuclei.

In the present calculations, we follow the procedures in
refs. [2,41] and solve the RCHB equations in a box of size
R = 20 fm and a step size of 0.1 fm. For nucleons, the pa-
rameter set NL-SH [42] was used; it describes properties of
nuclear matter as well as of the stable and the exotic nuclei
reasonably well. In addition, for lambdas with mass mΛ =
1115.6 MeV, the scalar coupling constant gΛσ = 0.619gσ

was chosen to reproduce the binding energy of a Λ in the
1s state of 40

Λ Ca (BΛ
1s = −18.7 MeV) [16], while the vec-

tor coupling constant gΛω = 2/3gN
ω is determined from the

naive quark model, where the tensor coupling constant fΛ
ω

is equal to the negative value of gΛω [43]. The contribution
of nucleons in continua was restricted within a cut-off en-
ergy Ecut ∼ 120 MeV. For fixed cut-off energy and for
fixed box radius R, the strength V0 = −650 MeV fm−3

of the zero-range pairing force was determined by adjust-
ing the corresponding pairing energy − 1

2Tr∆κ to that of a
RCHB calculation using the finite-range part of the Gogny
force DIS, as in ref. [2]. For ρ0 in the pairing force, we used
the nuclear matter density 0.152 fm−3. The pairing cor-
relation for hyperons was neglected and the spinor wave
function was obtained by solving the corresponding Dirac
equation. The whole system, including hyperons, nucleons
and mesons was solved self-consistently in the usual mean-
field approximation. The calculation for the Lagrangian L
will be presented below. The contribution of the terms
L′

ΛΛ with mσ∗ = 975 MeV and mφ = 1020 MeV has also
been done and will be discussed subsequently.

In fig. 1 we show the theoretical two-neutron sepa-
ration energy S2n for ordinary nuclei, single-Λ hypernu-
clei and double-Λ hypernuclei of Ca isotopes, labelled by
Λ = 0, Λ = 1 and Λ = 2, respectively, from the pro-
ton dripline to the neutron dripline. The common prop-
erty among them is: along the S2n versus N curve, three
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Table 1. Nuclear Fermi energies (in MeV) for nuclei close to
the neutron dripline. N is the neutron number and λ is the
Fermi energy.

λn λp

N ACa A+1
Λ Ca A+2

2Λ Ca ACa A+1
Λ Ca A+2

2Λ Ca

52 −0.067 −0.102 −0.141 −26.165 −26.384 −26.976
54 0.010 −0.022 −0.057 −26.482 −26.710 −27.390
56 0.089 0.062 0.030 −26.302 −26.953 −27.566

strong kinks appear at the magic or submagic numbers
N = 20, 28, and 40. However, there is no kink at the tra-
ditional magic number N = 50, which is due to the dis-
appearance of the energy gap between the 1g9/2 orbit and
the usually higher-lying s-d shell. Similarly, there is no
kink at N = 50 in the chemical potential curve due to the
lowering of the 3s1/2 and 2d5/2 orbits. It was found that
the extra Λ-hyperons do not break the neutron shell struc-
ture, as can be seen clearly in fig. 4 below. However, the
neutron dripline is pushed outward from N = 52 in the or-
dinary isotope chain to N = 54 in the hyper-isotope chain.
This is a slight but rewarding step for exploring the limit
of the existence of dripline nuclei, and is a manifestation
of the giant halo. To make this more quantitative, nuclear
Fermi energies for nuclei around the neutron dripline are
listed in table 1. The Fermi level is lowered in hypernuclei
compared with that in ordinary nuclei; embedding one or
two Λ’s into the ordinary nuclei can change an unbound
nucleus core into a bound one. The neutron Fermi energy
at N = 54 is reduced from 0.010 MeV in ordinary neutron
dripline nuclei to −0.022 MeV in single-Λ hypernuclei and
−0.057 MeV in double-Λ hypernuclei, i.e., 75

Λ Ca and 76
2ΛCa

are bound neutron-rich hypernuclei.
Another remarkable common property seen in fig. 1 is

that the S2n values for exotic Ca isotopes are extremely
close to zero in isotopes with neutron number larger than
40. If one regards 60Ca as a core, then the valence neu-
trons are filled in the weakly bound levels and continuum
above the N = 40 subshell for these nuclei. As mentioned
in ref. [5], the nuclei 62-72Ca, which are unbound without
pairing, become bound with the contribution from 1g9/2

and 3s1/2 in the continuum. The small two-neutron sepa-
ration energies in ordinary nuclei resulting from the giant
halo exist also in the Ca hypernuclei, just as in the Zr
chain [4]. This can be well understood from the effect of
the added Λ’s on the single-particle energy levels near the
threshold [44].

One of the characteristics of the halo or giant halo is
the large space extension of the nuclear density distribu-
tion. In fig. 2, the neutron density distributions in both
normal and logarithmic scales for single-Λ and double-Λ
hypernuclei of Ca isotopes are presented. From the loga-
rithmic scale figures, we can see that the distribution for
isotopes with N > 40 extend well beyond the lighter ones.
For example, the tail of 72

Λ Ca is 104 times larger than that
of 42

Λ Ca at r = 11 fm.
To further illustrate the neutron giant halo phenom-

ena in hypernuclei, the calculated root-mean-square radii
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Fig. 2. Neutron density distributions in normal and logarith-
mic scales for all even Ca isotopes with one or two Λ-hyperons.

of neutron (rn), lambda (rΛ), total matter (rm) as well as
charge radii (rc) from the RCHB calculation for ordinary
nuclei, and of single-Λ and double-Λ hypernuclei of even-N
Ca isotopes, are plotted as a function of N in fig. 3. Ex-
cept a slight decrease for rn and rm in the exotic region,
rn, rm and rc of the ordinary nuclei and the hypernuclei
almost overlap with each other. The slight decreases in
the exotic region suggest a shrinkage of the nuclear core.
This corresponds to the shift of the dripline nuclei and
the change from an unbound core nucleus to a bound one.
Furthermore, near the neutron dripline, abnormal behav-
ior breaking the N1/3 systematic rule appears at N = 40
in Ca isotopes with a more rapid than usual increase of
rn with neutron number. It gives further support for the
formation of the giant halo. Although the Λ-N interaction
cannot stabilize the core A = 140 in 141

Λ Zr [38], it does
stabilize the core in 74Ca. Obviously, the giant halo in
Ca isotopes, especially in hypernuclei, will be more easily
accessed experimentally than that in Zr isotopes.
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To understand the above results more clearly, the mi-
croscopic structure of the single-particle spectrum in the
canonical basis has been given in fig. 4, where the neu-
tron single-particle levels in the canonical basis are shown
for the even double-Λ Ca isotopes ranging from the mass
number A = 36 to A = 76. The shell closure (N = 20, 28)
and subshell closure (N = 40) can be clearly seen as large
gaps between levels. A dot-dashed line in the figure rep-
resents the neutron chemical potential λn, which jumps
three times at magic or submagic neutron number on its
way to the dripline nucleus 76

2ΛCa. As mentioned above,
similar kinks appear in the S2n results. These jumps cor-
respond to the shell (or subshell) closure. As the chemical
potential λn approaches zero, the Ca isotopes withN > 40
are all weakly bound, as the pairing correlation will scatter
the neutron pairs from bound states to continuum states.

Table 2. The single-particle energies εi (in MeV) for the last
bound state 1g9/2 and several states in the continuum, to-
gether with their corresponding neutron numbers (2j+1)nocc,
on these state for 66Ca and 68

Λ Ca.

Nuclei 1g9/2 3s1/2 2d5/2 2d3/2 1g7/2

(2j + 1)nocc
66Ca 5.14 0.178 0.426 0.108 0.136
68
Λ Ca 5.32 0.120 0.360 0.084 0.120

εi
66Ca −0.48 0.64 1.41 2.85 5.67
68
Λ Ca −0.71 0.81 1.40 3.06 5.72

Thus the additional neutrons occupy either weakly bound
states or the continuum and they supply very little bind-
ing energy. So, levels near the Fermi surface in the order
1g9/2, 3s1/2, 2d5/2, 2d3/2, etc., will assume an important
role, as discussed below.

Taking 66Ca and 68
Λ Ca as examples, the neutron single-

particle levels in the canonical basis are given in fig. 5. The
central potentials are represented by the solid curves. The
deepest central potentials for 66Ca and 68

Λ Ca are −69.23
MeV and −71.25 MeV, respectively, a 3% change. The
length of the line representing each level is proportional
to its occupation probability. The root-mean-square radius

rnlj =
√
(
∫
ρnljr2dτ)/(

∫
ρnljdτ) for each level is shown

in fm in parentheses behind the corresponding label. The
neutron Fermi surface is shown by the dashed line, which
is −0.607 MeV for 68

Λ Ca and −0.435 MeV for 66Ca. The
single-particle energies for the last bound state 1g9/2 and
several states in the continuum, together with the cor-
responding particle numbers on these state for 66Ca and
68
Λ Ca, are shown in table 2. By adding two Λ’s to ordi-
nary nuclei, the neutron numbers in the continuum de-
crease slightly, while the neutron single-particle levels rise
slightly. Conversely, the binding energy of the last bound
state, 1g9/2, increases, as does the occupation number.
This means that neutrons are bound more strongly than
in nuclei without Λ. The radius of the 3s1/2 state, which
contributes to the nuclear r.m.s. radius considerably, is re-
duced from 7.24 fm to 6.96 fm. Correspondingly, the total
neutron radius decreases from 4.314 fm to 4.303 fm. Nev-
ertheless, the root-mean-square radius of the 3s1/2 state
in hypernuclei is much larger than the r.m.s. radii of the
neighbor states (∼ 5 fm) and the total neutron radius
(4.31 fm) due to the zero centrifugal barrier. As a re-
sult, the neutron radii for single-Λ and double-Λ hypernu-
clei of even-N Ca isotopes increase rapidly with neutron
number near the dripline, similar to those for ordinary
Ca isotopes [5]. Thus, the giant neutron halos also exist
in hypernuclei. Of course, the hypernuclear lifetimes may
be too short for their neutron density distributions to be
measured, but our experimental-physics colleagues may
be able to rise to this challenge, just as they did for the
halos in excited states for ordinary nuclei [45].

Finally, we examine the contribution of the terms L′
ΛΛ

with mσ∗ = 975 MeV and mφ = 1020 MeV to see whether
the above conclusions still hold. As examples, the total
binding energy B, energies of the scalar meson Eσ∗ and
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Table 3. Total binding energy B, energies of the scalar meson Eσ∗ and vector meson Eφ, and the Fermi levels (all in MeV) for
neutrons, protons and hyperons in 72-78

2Λ Ca with and without L′
ΛΛ.

Lagrangian Nuclei B Eσ∗ Eφ λn λp λΛ

L 72
ΛΛCa 511.696 −0.251 −25.852 −19.666
74
ΛΛCa 511.919 −0.141 −26.644 −19.760
76
ΛΛCa 511.970 −0.057 −27.391 −19.835
78
ΛΛCa 511.871 0.030 −27.060 −19.903

L+ L′
ΛΛ

72
ΛΛCa 512.373 3.173 −2.473 −0.248 −26.316 −20.198
74
ΛΛCa 512.590 3.151 −2.456 −0.139 −26.945 −20.288
76
ΛΛCa 512.638 3.137 −2.445 −0.056 −27.286 −20.360
78
ΛΛCa 512.537 3.126 −2.436 0.032 −26.507 −20.426

vector meson Eφ, and the Fermi levels for the neutrons,
protons and hyperons in 72-78

2Λ Ca with and without L′
ΛΛ

are listed in table 3. The net contribution from the scalar
meson σ∗ and vector meson φ to the total binding energy
B is less than 1 MeV in all cases. The changes of the
neutron Fermi levels and the tendency of the two-neutron
separation energy are negligible. Therefore, we conclude
that these new terms in the Lagrangian do not change the
present results.

In summary, the ground-state properties of single-Λ
and double-Λ hypernuclei of even-N Ca isotopes from the
proton dripline to the neutron dripline have been inves-
tigated within the self-consistent relativistic continuum
Hartree-Bogoliubov theory. One or two Λ-hyperons em-
bedded into ordinary nuclei do change the bulk properties
of the core nucleus, such as the binding energy, the root-
mean-square radius, and the central potential, slightly.
The weak attractive force resulting from the additional Λ
moves the Fermi level slightly. And it is interesting to note
that the dripline nucleus for hypernuclei of Ca is atN = 54
compared with that for ordinary nuclei at N = 52, due to

the presence of one or two Λ-hyperons. Based on the two-
neutron separation energy S2n, r.m.s. radii, single-particle
levels spectra and the contribution of the continuum, gi-
ant halo phenomena still exist in hypernuclei with embed-
ded Λ-hyperons in the Ca isotopes. It should be noted
that, as in ref. [5], N = 50 is no longer a magic number
at the neutron dripline. This is due to the halo property
of the neutron density within the spherical nuclei, as op-
posed to the disappearance of the N = 20 magic number
due to deformation. So far, all the calculations have been
done with the assumption of spherical symmetry. Whether
these nuclei near the dripline are deformed or not is a very
interesting topic. Although the deformed RMF in coordi-
nate space has been reported in ref. [46], its extension to
include pairing self-consistently is still in progress; these
questions will be addressed in the future.
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38. D. Vretenar, W. Pöschl, G.A. Lalazissis, P. Ring, Phys.

Rev. C 57, R1060 (1998).
39. L. Majling, Nucl. Phys. A 585, 211c (1995).
40. H. Kucharek, P. Ring, Z. Phys. A 339, 23 (1991).
41. J. Meng, I. Tanihata, S. Yamaji, Phys. Lett. B 419, 1

(1998).
42. M.M. Sharma, M.A. Nagarajan, P. Ring, Phys. Lett. B

312, 377 (1993).
43. J. Cohen, H.J. Weber, Phys. Rev. C 44, 1181 (1991).
44. J. Meng, I. Tanihata, Nucl. Phys. A 650, 176 (1999).
45. Z.H. Liu et al., Phys. Rev. C 64, 034312 (2001).
46. S.G. Zhou, J. Meng, S. Yamaji, S.C. Yang, Chin. Phys.

Lett. 17, 717 (2000).


